
Mesos	and	Marathon	
- Designed	by	Yogesh	Darji	

Mesos	and	Marathon	
	
Step	1:	Installing	Software	
	

1. Install	Vagrant	and	VirtualBox.	MAKE	SURE	YOU	HAVE	THE	LATEST	ONE.	Older	versions	
of	Vagrant	do	not	work.	

2. Install	a	simple	Centos-7.1	Vagrant	VM.	
3. Configure	your	/etc/hosts	file	to	have	the	correct	hosts.	
4. Add	the	Mesosphere	RPM	repository.	
5. Install	the	mesos	and	marathon	RPMs	

	
	
Install	Vagrant	and	VirtualBox.	MAKE	SURE	YOU	HAVE	THE	LATEST	ONE.	Older	versions	
of	Vagrant	do	not	work.	Create	a	virtual	machine	with	Vagrant	running	the	CentOS	7.1	
Linux	distro.	This	will	download	the	image	you	need	so	it	takes	a	little	while:	
	
	
$	mkdir	vm-install	
$	cd	vm-install	
$	vagrant	init	bento/centos-7.1	
	
Edit	the	Vagrantfile	to	uncomment	the	line	withconfig.vm.network	"private_network",	
ip:	"192.168.33.10"and	add	the	line	config.vm.hostname	=	"node1"	right	after	that:	
	
#	-*-	mode:	ruby	-*-	
#	vi:	set	ft=ruby	:	
	
Vagrant.configure(2)	do	|config|	
		config.vm.box	=	"bento/centos-7.1"	
	
		config.vm.network	"private_network",	ip:	"192.168.33.10"	
		config.vm.hostname	=	"node1"	
end	
	
	

Start	the	VM	and	ssh	into	it:	
	

	 $	vagrant	up	

	 $	vagrant	ssh	

	
	
	

Mesos	and	Marathon	
- Designed	by	Yogesh	Darji	

Modify	the	/etc/hosts	file	to	make	the	node1	name	map	to	the	IP	address	in	the	Vagrantfile:	
	

[node1]$	sudo	vi	/etc/hosts	

[node1]$	cat	/etc/hosts	

127.0.0.1			localhost	localhost.localdomain	localhost4	localhost4.localdomain4	

::1									localhost	localhost.localdomain	localhost6	localhost6.localdomain6	

192.168.33.10	node1	

	
	
	

Install	the	Mesosphere	software	packages:	
	

[node1]$	sudo	rpm	-Uvh	http://repos.mesosphere.com/el/7/noarch/RPMS/mesosphere-el-
repo-7-1.noarch.rpm	
[node1]$	sudo	yum	-y	install	mesos	marathon	

	
	

	
Step2:	Installing	Zookeeper	
	
Install	Zookeeper	and	the	Zookeeper	server	package	by	pointing	to	the	RPM	repository	for	
ZooKeeper:	
	
[node1]$	sudo	rpm	-Uvh	http://archive.cloudera.com/cdh4/one-click-
install/redhat/6/x86_64/cloudera-cdh-4-0.x86_64.rpm	
[node1]$	sudo	yum	-y	install	zookeeper	zookeeper-server	
	
Initialize	and	start	Zookeeper:	
	
[node1]$	sudo	-u	zookeeper	zookeeper-server-initialize	--myid=1	
[node1]$	sudo	service	zookeeper-server	start	
	
Use	the	interactive	shell	to	test	your	installation:	
	
[node1]$	/usr/lib/zookeeper/bin/zkCli.sh	
#	sometimes	at	this	point	you	get	an	error	that	java	is	missing.		This	means	yum	did	NOT	install	
java	for...reasons.		Start	over.	
help	
create	/test	1	
get	/test		
set	/test	2	

Mesos	and	Marathon	
- Designed	by	Yogesh	Darji	

get	/test	
delete	/test	
quit	
	
Validate	that	you	can	stop	and	restart	ZooKeeper:	
	
[node1]$	sudo	service	zookeeper-server	stop	
[node1]$	sudo	service	zookeeper-server	start	

	
	
	
Step3	:	Using	Apache	Mesos	
	
Apache	Mesos	is	the	foundation	of	the	Mesosphere	technology	stack	and	powers	all	of	the	
communications	and	system	management.	Mesos	uses	a	simple	architecture	to	give	you	
intelligent	task	distribution	across	a	cluster	of	machines	without	worrying	about	where	they	are	
scheduled.	In	this	module	Mesos	is	used	to	run	and	manage	services	on	a	four	node	cluster.	To	
get	started	you	must	set	up	themesos-master	on	node1.	
	
In	this	exercise:	
	
Start	the	mesos-master	and	mesos-slave	processes.	
Test	that	the	mesos-master	and	mesos-slave	processes	are	working	as	expected.	
Execute	a	sample	command	from	the	command	line.	
Observe	the	command's	progress	from	both	the	command	line	and	a	web	GUI.	
	
Start	the	mesos-master	and	mesos-slave	processes:	
	
[node1]$	sudo	service	mesos-master	start	
[node1]$	sudo	service	mesos-slave	start	
[node1]$	sudo	netstat	-nlp	|	grep	mesos	
	
	
Access	the	Mesos	user	interface	with	your	browser	athttp://192.168.33.10:5050	and	confirm	
that	the	IP	address	shown	in	the	user	interface	is	192.168.33.10.	If	not,	start	over	by	
usingvagrant	destroy.	
	
Test	out	mesos	by	using	the	mesos-execute	command:	
	
[node1]$	export	MASTER=$(mesos-resolve	`cat	/etc/mesos/zk`	2>/dev/null)	
[node1]$	mesos	help	
[node1]$	mesos-execute	--master=$MASTER	--name="cluster-test"	--command="sleep	40"	
	

Mesos	and	Marathon	
- Designed	by	Yogesh	Darji	

With	the	mesos-execute	command	running,	enter	ctrl-z	to	suspend	the	command.	You	can	see	
how	it	appears	in	the	web	UI	and	command	line:	
#	hit	ctrl-z	
[node1]$	bg	#	this	sends	the	process	into	the	background	
[node1]$	mesos	ps	--master=$MASTER	

	
	

Step4:	Starting	Marathon	
	
In	Linux	the	init/systemd/upstart	program	manages	all	of	the	processes	running	on	your	
system.	The	Mesosphere	stack	uses	Marathon	to	manage	the	processes	and	services.	Marathon	
is	the	technology	that	plays	the	role	of	init/systemd/upstart	in	the	analogy	of	an	operating	
system.	Marathon	provides	both	a	simple	GUI	and	an	extensive	REST	API	that	you	can	work	
with	if	you	need	more	capability.	
	
1. Start	Marathon.	
2. Explore	the	Marathon	GUI.	
3. Install	an	app	and	start	a	simple	Python	web	server	by	using	Marathon.	
4. Test	that	the	Python	web	server	is	live.	
	
	
Start	Marathon	by	using	the	service	command:	
	
[node1]$	sudo	service	marathon	start	
	
Go	to	http://192.168.33.10:8080/	to	view	the	Marathon	GUI.	From	the	GUI,	install	a	new	app	
that	Marathon	will	run.	In	this	example,	we	start	by	using	the		
python	-m	SimpleHTTPServer	app.:	
	
#	view	the	python	SimpleHTTPServer	web	server	is	running	
[node1]$	netstat	-nlp	|	grep	8000	
#	use	curl	to	play	with	the	server	
[node1]$	curl	http://192.168.33.10:8000/	
	
Marathon	and	Mesos	give	you	direct	access	to	the	stderr	(standard	error)	and	stdout	(standard	
out)	files	for	every	process.	You	can	usecurl	to	view	these	files	and	see	that	they	are	
theSimpleHTTPServer's	logs,	which	you	would	normally	see	on	your	terminal	when	you	start	it:	
	
[node1]$	curl	http://192.168.33.10:8000/stderr	
[node1]$	curl	http://192.168.33.10:8000/stdout	
	
	
	
	

Mesos	and	Marathon	
- Designed	by	Yogesh	Darji	

Step	5:	Using	Marathon	GUI	
	
You	can	use	the	Marathon	GUI	to	configure	and	deploy	your	applications.	In	this	exercise	you	
will	learn	how	the	GUI	works	and	how	to	configure	and	control	a	simple	Python	web	service.	
This	exercise	is	entirely	video	based.	In	this	exercise:	
	

1. Use	the	command	line	to	kill	the	python	web	server.	
2. Watch	Marathon	bring	the	Python	web	server	back	up.	
3. Learn	how	to	scale	the	app	and	halt	the	process.	
4. Learn	how	to	use	$PORT	to	let	Marathon	assign	random	ports	to	your	applications.	
5. Scale	the	apps	further	than	1	node	using	randomly	assigned	ports.	

	
	
	
Step	6:	Marathon	REST	API	
	
The	 GUI	 is	 the	 primary	 way	 to	 work	 with	 Marathon,	 but	 it's	 also	 good	 to	 understand	 the	
underlying	REST	interface	for	Marathon.	This	exercise	will	show	you	advanced	tricks	you	can	do	
right	 from	 the	 command	 line	 using	 the	 Marathon	 REST	 API.	 You	 don't	 need	 to	 know	 any	
programming	 languages	 to	 complete	 this	 exercise,	 just	 a	 basic	 understanding	 of	
the	curl	command	line	HTTP	tool.	
In	 this	 exercise	 you'll	 see	how	 these	REST	 calls	map	 to	 the	Marathon	GUI	and	 the	Marathon	
command	line	tool.	
	
#	get	metrics	on	the	running	apps	

[node1]$	curl	http://0.0.0.0:8080/metrics	|	python	-m	json.tool	|	less	

	

#	look	at	the	apps	you	have	installed	

[node1]$	curl	http://0.0.0.0:8080/v2/apps	|	python	-m	json.tool	

	

#	look	at	a	specific	app,	named	test	from	Ex4	and	Ex5	

[node1]$	curl	http://0.0.0.0:8080/v2/apps/test	|	python	-m	json.tool	

	

#	delete	that	app	

[node1]$	curl	-X	DELETE	http://0.0.0.0:8080/v2/apps/test	|	python	-m	json.tool	

	

#	show	that	the	app	is	gone	

Mesos	and	Marathon	
- Designed	by	Yogesh	Darji	

[node1]$	curl	http://0.0.0.0:8080/v2/apps/test	|	python	-m	json.tool	

	
	
Step	7:	Creating	a	Slave	Node	
	
	
Using	a	single	node	is	boring.	You'll	now	create	a	second	node	to	learn	how	the	Mesosphere	stack	
works	with	multiple	machines,	which	is	the	entire	point.	Most	of	this	exercise	is	a	repeat	of	the	
first	8	exercises	but	compressed	and	simplified	for	the	requirements	of	a	slave	node.	
	
In	this	exercise	you	will:	
	

1. Make	sure	all	the	node1	services	will	restart	on	reboot	withchkconfig.	
2. Halt	the	Vagrant	for	node1	and	make	a	copy	of	it.	
3. Use	that	copy	to	create	a	new	master	node	with	a	new	two	nodeVagrantfile.	

	
You	need	to	do	some	cleanup	before	you	can	shut	down	and	pacakgenode1.	Make	sure	that	all	
of	the	services	are	properly	set	to	start	on	boot	with	chkconfig:	
	
[node1]$	sudo	chkconfig	zookeeper-server	on	

[node1]$	sudo	chkconfig	mesos-master	on	

[node1]$	sudo	chkconfig	mesos-slave	on	

[node1]$	sudo	chkconfig	marathon	on	

	#	if	you	are	running	chronos	with	marathon	then	do	not	do	this	

[node1]$	sudo	chkconfig	chronos	on	

Once	you	do	that	we	need	to	make	a	Vagrant	box	out	of	it	so	we	can	copy	it	over	to	our	new	
setup:	
	
$	vagrant	halt	

$	vagrant	package	default	

$	vagrant	destroy	default	

$	vagrant	box	add	mesos-master	package.box	

Next	 you	 need	 to	 add	 a	 two	 node	 configuration	 to	 your	 Vagrantfile.	 The	 line	 that	 has	 your	
network	config	now	needs	this:	
	
#	-*-	mode:	ruby	-*-	

#	vi:	set	ft=ruby	:	

Mesos	and	Marathon	
- Designed	by	Yogesh	Darji	

	

Vagrant.configure(2)	do	|config|	

		config.vm.box	=	"bento/centos-7.1"	

		config.vm.define	"node1"	do	|node1|	

						node1.vm.network	"private_network",	ip:	"192.168.33.10"	

						node1.vm.hostname	=	"node1"	

						node1.vm.box	=	"mesos-master"	

		end	

	

		config.vm.define	"node2"	do	|node2|	

						node2.vm.network	"private_network",	ip:	"192.168.33.11"	

						node2.vm.hostname	=	"node2"	

		end	

end	

Once	 you	 have	 that	 in	 your	 Vagrantfile	 you	 can	 then	 dovagrant	 up	 and	 it	will	 recreate	 your	
original	Vagrant	master	from	thepackage.box	file	you	created	naming	it	node1,	and	start	a	new	
VM	named	node2	with	no	configuration	in	it.	
	
	
	
Step	8:	Installing	Mesos	
	
When	the	Vagrant	VM	is	ready,	you	can	install	the	necessary	Mesos	slave	node	software.	In	this	
exercise:	

1. SSH	into	the	new	node	that	you	created.	
2. Add	the	Mesosphere	RPM	repository.	
3. Install	only	the	mesos	RPM	package.	
4. Add	the	new	IP	for	node2	to	the	/etc/hosts	file.	
5. Point	the	/etc/mesos/zk	file	at	the	node1	master.	
6. Start	the	slave	service	and	make	sure	it	starts	on	reboot.	

	
	
	
	
	
	

Mesos	and	Marathon	
- Designed	by	Yogesh	Darji	

When	the	Vagrant	VM	is	ready,	you	can	ssh	into	it	with	this	command:	

$	vagrant	up	node2	

$	vagrant	ssh	node2	

On	node2,	install	Mesos:	
[node2]$	sudo	rpm	-Uvh	http://repos.mesosphere.com/el/7/noarch/RPMS/mesosphere-el-rep
o-7-1.noarch.rpm	

[node2]$	sudo	yum	-y	install	mesos	

Update	node2's	/etc/hosts	file	to	include	entries	for	both	nodes,and	remove	the	"node2"	name	
from	the	127.0.0.1	entry	on	the	first	line.	The	file	should	look	like	this:	
127.0.0.1			localhost	[..	other	localhosts	..]	

::1									localhost	[..	other	localhosts	..]	

192.168.33.10	node1	

192.168.33.11	node2	

Now,	if	you	do	a	ping	node2	then	you	should	see	192.168.33.11:	
[node2]$	ping	node2	

PING	node2	(192.168.33.11)	56(84)	bytes	of	data.	

64	bytes	from	node2	(192.168.33.11):	icmp_seq=1	ttl=64	time=0.043	ms	

...	

If	node2	resolves	to	127.0.0.1	then	your	first	line	is	wrong.	Remove"node2"	from	the	first	line.	
Edit	the	/etc/mesos/zk	file	on	node2	to	point	to	the	master	node:	
zk://192.168.33.10:2181/mesos	

	
Start	up	Mesos	as	a	slave	with:	
	
[node2]$	sudo	service	mesos-slave	start	

	
Ensure	that	mesos-slave	will	be	kept	running	across	reboots/failures:	
[node2]$	sudo	chkconfig	mesos-slave	on	

[node2]$	sudo	chkconfig	mesos-master	off	

[node2]$	systemctl	list-unit-files	|	grep	mesos	

mesos-master.service																								disabled	

mesos-slave.service																									enabled	

	

Mesos	and	Marathon	
- Designed	by	Yogesh	Darji	

node2	is	now	configured.	
	
Finally,	 switch	 over	 to	 node1	 and	 update	 /etc/hosts	 to	 look	 the	 same	 as	 on	 node2,	 likewise	
ensuring	that	the	"node1"	name	isn't	present	on	the	first	line.	Then	verify	the	changes:	
	
$	vagrant	ssh	node1	

[node1]$	sudo	vi	/etc/hosts	

[node1]$	ping	node1	

PING	node1	(192.168.33.10)	56(84)	bytes	of	data.	

64	bytes	from	node2	(192.168.33.10):	icmp_seq=1	ttl=64	time=0.08	ms	

...	

[node1]$	ping	node2	

PING	node2	(192.168.33.11)	56(84)	bytes	of	data.	

64	bytes	from	node2	(192.168.33.11):	icmp_seq=1	ttl=64	time=1.44	ms	

...	

	
	
	
	
Step	9:	Scaling	to	Two	Nodes	
	
	
After	you	have	 the	mesos-slave	 running	on	node2,	you	can	use	 the	Marathon	GUI	 to	expand	
the	test	Python	web	server	out	to	node2and	node1.	This	exercise	is	entirely	video	based.	
	
In	this	exercise:	
	
Use	the	Marathon	GUI	to	scale	up	to	4	nodes.	
Observe	how	node2	now	has	the	test	application	running	in	the	Mesos	GUI.	
	
	
1. View	the	two	Mesos	nodes	in	the	Marathon	GUI	and	see	how	they	are	displayed.	
2. Use	 the	 Marathon	 GUI	 to	 scale	 down	 your	 nodes	 to	 0,	 then	 with	 the	 newly	

added	node2	active,	scale	it	back	up	to	4	so	you	can	see	them	be	distributed	across	the	little	
cluster.	

3. Use	mesos-dns	to	discover	where	they	are	and	what	their	ports	are.	
	
	

Mesos	and	Marathon	
- Designed	by	Yogesh	Darji	

Step	10:	Deploying	a	Web	App	using	Docker	
	
	

This exercise uses the Go project Outyet to deploy a simple Go-based web application
inside a Docker.

In this exercise:

1. Install Docker.
2. Compile the Outyet web application.
3. Build a Docker container that has the Outyet application in it.
4. Get the Docker container running in Marathon on node1.

	
	

For this exercise I use the instructions found at https://blog.golang.org/docker for
deploying the simple Outyet web application. Borrowing from the Go instructions:

Install Docker:

[node1]$	sudo	yum	install	-y	golang	git	device-mapper-event-libs	docker	

[node1]$	sudo	chkconfig	docker	on	

[node1]$	sudo	service	docker	start	

[node1]$	export	GOPATH=~/go	

[node1]$	go	get	github.com/golang/example/outyet	

The outyet project comes with a Dockerfile you can use, so cd to the source
directory:

[node1]$	cd	$GOPATH/src/github.com/golang/example/outyet	

Use the Dockerfile to build your docker image:

[node1]$	sudo	docker	build	-t	outyet	.	

Test the Dockerfile before adding it to Marathon by running this command:

[node1]$	sudo	docker	run	--publish	6060:8080	--name	test	--rm	outyet	

Then go to http://192.168.33.10:6060/ with your browser to confirm it works. Once it
does you can hit CTRL-c to exit the outyet docker.

Mesos	and	Marathon	
- Designed	by	Yogesh	Darji	

Create a Marathon application that runs this command, but using the Marathon Docker
support. Once the outyet application is loaded onto the VM you can create a new app
using JSON and curl. First make the file names /vagrant/outyet.json:

{	

		"id":	"outyet",	

		"cpus":	0.2,	

		"mem":	20.0,	

		"instances":	1,	

		"constraints":	[["hostname",	"UNIQUE",	""]],	

		"container":	{	

				"type":	"DOCKER",	

				"docker":	{	

						"image":	"outyet",	

						"network":	"BRIDGE",	

						"portMappings":	[

								{	"containerPort":	8080,	"hostPort":	0,	"servicePort":	0,	"protocol":	"tcp"	}	

]	

				}	

		}	

}	

You will also need to tell mesos that it should allow Docker:

[node1]$	echo	'docker,mesos'	|	sudo	tee	/etc/mesos-slave/containerizers	

[node1]$	sudo	service	mesos-slave	restart	

This replicates the above docker command settings, but Marathon will configure and
manage the container better. Once you have that run this command:

[node1]$	curl	-X	POST	http://192.168.33.10:8080/v2/apps	-d	@/vagrant/outyet.json	-H	"Conten
t-type:	application/json"	

Later in this tutorial you will use this method to easily sync your configuration to
Marathon.

Mesos	and	Marathon	
- Designed	by	Yogesh	Darji	

Step	11:	Distributing	Docker	to	Multiple	Nodes	
	
	

After building the Docker image in Exercise 12, you can easily deploy the Outyet web
application to your node2 server. You simply save the Docker and load it on node2 and
then tell Marathon to scale it. This simple procedure lets you automate the deployment
of nearly any application that you can "dockerize".

In this exercise:

1. Save the Docker image to a file named outyet.tar.gz.
2. Copy the Docker image to the /vagrant/ directory in node1.
3. Load the outyet.tar.gz docker container into node2.
4. Use Marathon to scale Outyet to two nodes.

	
	

Save the Docker image:

[node1]$	sudo	docker	save	--output=outyet.tar.gz	outyet	

Send the tar.gz file to node2:

[node1]$	cp	outyet.tar.gz	/vagrant/	

Install Docker on node2:

$	vagrant	ssh	node2	

[node2]$	sudo	yum	install	-y	device-mapper-event-libs	docker	

[node2]$	sudo	chkconfig	docker	on	

[node2]$	sudo	service	docker	start	

[node2]$	echo	'docker,mesos'	|	sudo	tee	/etc/mesos-slave/containerizers	

[node2]$	sudo	service	mesos-slave	restart	

Import the outyet.tar.gz file that you made:

[node2]$	sudo	docker	load	--input=/vagrant/outyet.tar.gz	

Test that Docker is now installed on the node2 VM:

[node2]$	sudo	docker	run	--publish	6060:8080	--name	test	--rm	outyet	

Mesos	and	Marathon	
- Designed	by	Yogesh	Darji	

Test that Docker is running on http://192.168.33.11:6060/.

Enter CTRL-C and go to Marathon and expand this to 2 nodes. Watch the video to see
me doing it. At this point, hopefully you know how to go into Marathon and instruct it to
run more than one node.

	
	
	

