
2-NODE	DOCKERIZED	ELASTICSEARCH	CLUSTER	
		 	 -Designed	by	Yogesh	Darji	

									
How	to	create	ElasticSearch	Cluster	

	
	
Step1:	Run	the	Docker	Image	with	following	command	on	one	box	say		-	192.168.56.101	
	
root@osboxes:/home/osboxes#	docker	run	-d	my_es:v1	
12fb36ce4de45a352136ba0e551f1d36a8cf25f10201384ef9161dd32c7e0a6d	
	

	
	
	
Step2:	Run	the	Docker	Image	with	following	command	on	other	box	say		-	192.168.56.102	
	
root@osboxes:/home/osboxes#	docker	run	-d	my_es:v1	
8a923ff11d07ce640811e9110a8fd8064381294a1897be5b9ae9f9ef47519028	
	

	
	
	
	
	
	
	
	
	

2-NODE	DOCKERIZED	ELASTICSEARCH	CLUSTER	
		 	 -Designed	by	Yogesh	Darji	

									
	
Step3:	Inspect	both	the	Nodes	
	
	
	
$docker	inspect	12fb36ce4de4	
	
You	will	find	"IPAddress":	“172.17.0.2”	in	the	Network	Section	at	the	bottom	
	
	

	
	
	
	
	
	
	
$docker	inspect	5dcc1cc47729	
	
You	will	find	"IPAddress":	“172.17.0.3”	in	the	Network	Section	at	the	bottom	
	

2-NODE	DOCKERIZED	ELASTICSEARCH	CLUSTER	
		 	 -Designed	by	Yogesh	Darji	

									

	
	
	
Step	4:	Check	the	cluster	health	on	both	the	boxes	
	
root@osboxes:/VZElastic#	curl	-XGET	http://172.17.0.2:9200/_cluster/health/?pretty	
	

	
	
	
	

	

	

	

2-NODE	DOCKERIZED	ELASTICSEARCH	CLUSTER	
		 	 -Designed	by	Yogesh	Darji	

									
	

root@osboxes:/VZElastic#	curl	-XGET	http://172.17.0.3:9200/_cluster/health/?pretty	
	
 	

	
	
	
Step	5:	Start	the	dockerized	Elastic	Search	Instance	on	both	boxes	
	
	
	
docker	exec	-it	12fb36ce4de4	bash	
	
bin/elasticsearch	-Des.insecure.allow.root=true	
	

	
	
	
	

2-NODE	DOCKERIZED	ELASTICSEARCH	CLUSTER	
		 	 -Designed	by	Yogesh	Darji	

									
Step	6:	Since,	the	Elasticsearch	is	running	on	both	the	windows,	open	a	new	window,	to	set	up	
a	cluster	
	
	
Step	7:	sudo	apt-get	update	
	
Step	8:	Edit	etc/hosts	file	of	all	nodes	and	make	entries	for	all	nodes	for	the	hostnames	as	
follows:		
	 	 	
	 	 vi	etc/hosts	in	the	root	
	

172.17.0.2	node-1	
172.17.0.3	node-2	
	
	

	
	
Step	9:			All	elastic	search	configuration	files	are	in	elasticsearch.yml	which	is	located	in	
/etc/elasticsearch	folder	
	
	
	
apt-get	update	
apt-get	install	vim	
	
	
	
cd	/etc/elasticsearch/	

2-NODE	DOCKERIZED	ELASTICSEARCH	CLUSTER	
		 	 -Designed	by	Yogesh	Darji	

									
	

	
	
Step	10:	Now	edit	the	elasticsearch.yml	file	for	configuring	nodes	
	
vim	elasticsearch.yml	
	

i. Under	cluster	section:	
	
cluster.name:	ES-cluster	

	
ii. Under	node	section,	change	the	node	name	parameter	and	add	

other	parameters	as	shown	below.   	

node.name:	node-1 	

node.client:	true 	

node.data:	false  	

	

Under	network	section,	change	the	“network.host”	parameter	with	IP	address	of	your	
client	node. 	
	
network.host:	172.17.0.2	
	

2-NODE	DOCKERIZED	ELASTICSEARCH	CLUSTER	
		 	 -Designed	by	Yogesh	Darji	

									
	
	

iii. Under	discovery	Section: 	

discovery.zen.ping.multicast.enabled:false	

discovery.zen.ping.unicast.hosts:	[“node-1”,	“node-2”]	

	

	

	

iv. Save	the	file	and	restart	the	elastic	search	service	for	changes.	

v. sudo	service	elasticsearch	restart	
	
Now	when	I	run	the		
curl	-XGET	http://172.17.0.2:9200/_cluster/health/?pretty	
	

	
	
	

2-NODE	DOCKERIZED	ELASTICSEARCH	CLUSTER	
		 	 -Designed	by	Yogesh	Darji	

									
	

Playing	with	your	Cluster	
	
	
Step	1.	Create	an	index	named	–	customer	in	the	node	
	

	
	
	
Step	2:	Now	increase	the	number	of	replicas	of	shard	by	2:	
	
curl	-XPUT	'172.17.0.2:9200/customer/_settings'	-d	'	
{	
				"index"	:	{	
								"number_of_replicas"	:	2	
				}	
}'	
	
	
	
As	you	can	see	in	the	SS,	the	number	of	unassigned	shards	have	become	5	now.	Also	the	
"active_shards_percent_as_number"	:	66.66666666666666”	has	reduced	and	the		"status"	:	
"yellow",	
		"unassigned_shards"	:	5,	
	

2-NODE	DOCKERIZED	ELASTICSEARCH	CLUSTER	
		 	 -Designed	by	Yogesh	Darji	

									

	
		
	
	
	
	

Some	ElasticSearch	Concepts:	
	
Faster	searches	when	compared	to	traditional	DB.	It	is	distributed	in	nature.		
	
Node:	
	
Node	is	an	instance	of	Elasticsearch.	A	collection	of	connected	nodes	is	called	Cluster.	If	you	are	
running	a	single	node	of	ElasticSearch,	then	you	have	cluster	of	one	node.	
	
	
Every	node	in	the	cluster	can	handle	HTTP	and	Transport	traffic	by	default.	The	transport	layer	
is	used	exclusively	for	communication	between	nodes	and	between	nodes	and	
the	Java	TransportClient;	the	HTTP	layer	is	used	only	by	external	REST	clients.	
	
	
All	nodes	know	about	all	the	other	nodes	in	the	cluster	and	can	forward	client	requests	to	the	
appropriate	node.	Besides	that,	each	node	serves	one	or	more	purpose:	 	

	

Master-eligible	node	

A	node	that	has	node.master	set	to	true	(default),	which	makes	it	eligible	to	be	elected	as	

the	masternode,	which	controls	the	cluster.	
	
	
	

2-NODE	DOCKERIZED	ELASTICSEARCH	CLUSTER	
		 	 -Designed	by	Yogesh	Darji	

									
Data	Node:	
A	node	that	has	node.data	set	to	true	(default).	Data	nodes	hold	data	and	perform	data	related	
operations	such	as	CRUD,	search,	and	aggregations.	
	
	
	
Client	Node:	
A	client	node	has	both	node.master	and	node.data	set	to	false.	It	can	neither	hold	data	nor	
become	the	master	node.	It	behaves	as	a	“smart	router”	and	is	used	to	forward	cluster-level	
requests	to	the	master	node	and	data-related	requests	(such	as	search)	to	the	appropriate	data	
nodes.	
	
	
Tribe	node	
A	tribe	node,	configured	via	the	tribe.*	settings,	is	a	special	type	of	client	node	that	can	connect	
to	multiple	clusters	and	perform	search	and	other	operations	across	all	connected	clusters.	
	
	

Master	Eligible	Node	
The	master	node	is	responsible	for	lightweight	cluster-wide	actions	such	as	creating	or	deleting	
an	index,	tracking	which	nodes	are	part	of	the	cluster,	and	deciding	which	shards	to	allocate	to	
which	nodes.	It	is	important	for	cluster	health	to	have	a	stable	master	node.	
	
node.master:	true		
node.data:	false		
	
Sharding	Rules:	
	
It	is	horizontal	Scaling.	

This	module	provides	per-index	settings	to	control	the	allocation	of	shards	to	nodes:	

• Shard	allocation	filtering:	Controlling	which	shards	are	allocated	to	which	nodes.	

• Delayed	allocation:	Delaying	allocation	of	unassigned	shards	caused	by	a	node	leaving.	

• Total	shards	per	node:	A	hard	limit	on	the	number	of	shards	from	the	same	index	per	node.	
	
	
Shard	Allocation	Filtering,	allows	you	to	specify	which	nodes	are	allowed	to	host	the	shards	of	
a	particular	index.	
	
PUT	test/_settings	
{	

2-NODE	DOCKERIZED	ELASTICSEARCH	CLUSTER	
		 	 -Designed	by	Yogesh	Darji	

									
		"index.routing.allocation.include.size":	"big,medium"	
}	
	
	
PUT	test/_settings	
{	
		"index.routing.allocation.include.size":	"big",	
		"index.routing.allocation.include.rack":	"rack1"	
}	

	

	

Delaying	Allocation	when	a	node	leaves:	

When	a	node	leaves	the	cluster	for	whatever	reason,	intentional	or	otherwise,	the	master	

reacts	by:	

• Promoting	a	replica	shard	to	primary	to	replace	any	primaries	that	were	on	the	node.	

• Allocating	replica	shards	to	replace	the	missing	replicas	(assuming	there	are	enough	nodes).	

• Rebalancing	shards	evenly	across	the	remaining	nodes.	
	
	
	
	
Monitoring	delayed	unassigned	shards	

The	number	of	shards	whose	allocation	has	been	delayed	by	this	timeout	setting	can	be	viewed	

with	the	cluster	health	API:	

	
GET	_cluster/health	
	
	
Removing	a	node	permanently	

If	a	node	is	not	going	to	return	and	you	would	like	Elasticsearch	to	allocate	the	missing	shards	

immediately,	just	update	the	timeout	to	zero:	

PUT	/_all/_settings	
{	

2-NODE	DOCKERIZED	ELASTICSEARCH	CLUSTER	
		 	 -Designed	by	Yogesh	Darji	

									
		"settings":	{	
				"index.unassigned.node_left.delayed_timeout":	"0"	
		}	
}	
	
	
	
	
	
	
	
	
	
Total	Shards	per	node:	
	

The	cluster-level	shard	allocator	tries	to	spread	the	shards	of	a	single	index	across	as	many	

nodes	as	possible.	However,	depending	on	how	many	shards	and	indices	you	have,	and	how	big	

they	are,	it	may	not	always	be	possible	to	spread	shards	evenly.	

The	following	dynamic	setting	allows	you	to	specify	a	hard	limit	on	the	total	number	of	shards	

from	a	single	index	allowed	per	node:	

index.routing.allocation.total_shards_per_node	

	

How	to	Replicate	Data?	

At	index	time,	a	replica	shard	does	the	same	amount	of	work	as	the	primary	shard.	New	
documents	are	first	indexed	on	the	primary	and	then	on	any	replicas.	Increasing	the	number	of	
replicas	does	not	change	the	capacity	of	the	index.	

	

However,	replica	shards	can	serve	read	requests.	If,	as	is	often	the	case,	your	index	is	search	
heavy,	you	can	increase	search	performance	by	increasing	the	number	of	replicas,	but	only	if	
you	also	add	extra	hardware	

Adding	more	nodes	would	not	help	us	to	add	indexing	capacity,	but	we	could	take	advantage	of	

the	extra	hardware	at	search	time	by	increasing	the	number	of	replicas:	

2-NODE	DOCKERIZED	ELASTICSEARCH	CLUSTER	
		 	 -Designed	by	Yogesh	Darji	

									

	

	

	

